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The possibility of solving the converse thermal conductivity problembeginning with 
temperature measurements during the process of nonisothermal polymerization is 
demonstrated. 

The reaction of polymer formation from monomers is usually accompanied by significant 
thermal effects. The heat produced is usually released to the surrounding medium. But be- 
cause of the poor thermal conductivity of the polymer and the very high volume to surface 
ratios of the reaction vessels even in the case of laboratory reactors, even more so in in- 
dustrial reactors, the amount of heat extracted is always insufficient for maintenance of 
isothermal conditions. Therefore the reaction occurs in a nonisothermal mode over time and 
reactor volume. The temperature rise then causes an increase in reaction rate and, generally 
speaking, a change in composition of the final product. Such a reaction mechanism makes it 
necessary to solve a thermal and a kinetic problem simultaneously when undertaking a theoret- 
ical study of the reaction. For a spherical reactor the two problems are formulated in the 
form of two equations: 

OT = a ( 02T 2 OT ~ Q dR 
Ot ~,---~r 2 -~- --r - - O r  ] q- . . . .  c dt ' (1) 

dR = Kf  (~) exp ( - -  E/RT)  (2)  
dt 

with the following boundary conditions: at t = 0, T(r) = To and n = 0, at r = ro,(~T/~r) = 
--(B/ro) (T -- To), where To = const is the temperature of the surrounding medium. 

The system (i), (2) may be used to solve either the direct or converse problems. The 
former of these consists of finding T(r, t) and ~(r, t) given values of all constants and 
the function f(~). The latter problem consists of determining the constants K, E, Q, B from 
values of the functions T(t, r k) measured at several points r = r k. The direct problem is 
considered in [i], primarily in connection with a study of the conditions for "thermal explo- 
sion." 

The present study is dedicated to analysis of the possibilities of numerical solution 
of the converse problemusing the example of anlon-actlvated polymerization of dodecalactam 
"en masse," occurring with 100% output and leading to the production of polyamide-12 articles 
[2]. 

The k i n e t i c s  o f  t h i s  r e a c t i o n  w e r e  d e t e r m i n e d  i n d e p e n d e n t l y  i n  t h e  a d i a b a t i c  r e g i m e  and 
r e c a l c u l a t e d  t o  i s o t h e r m a l  c o n d i t i o n s  [ 3 ] .  The f i n a l  e x p r e s s i o n ,  which  w i l l  b e  v e r i f i e d  b e -  
low,  may b e  w r i t t e n  i n  t h e  f o r m  o f  Eq. (21,  where  K = KoA = 2 . 9 -105A min-X;  f ( n )  = 1 -- n ( a t  
least to n ffi 0.7), Q = 43 J/cmS; E is dependent on ~, but for the initial stage of the pro- 
cess E = 12 kcal/mol. 

We attempted to find K, E, Q, B in Eqs. (i), (21 for f(~) = I -- n using experimental 
data for T(t, 01 and T(t, ro), corresponding to various regimes: values of A = 0.35; 0.50, 
0.75, 1.0 mol. %, and To = 160, 170, 180, 190 ~ , beginning with the condition that the system 
(11, (21 with the constants so found should best describe the entire set of experimental data. 

Such a problem belongs to the class of so-called converse problems. Its solution is 
based on the introduction of some function of the parameters -- in the given case r (K, E, Q, 
B) --which characterizes the norm of the deviation of the theoretical curves: solutions of 
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Fig. i. Comparison of calculated functions To(t) and T1(t) 
with original data used for machine experiment at To = 160 
(a), 180 (b), 190 (c) ~ i) @ = 0.ii, 2) 0.06, 3) 0.01; t, 
min. 

Eqs. (i), (2) versus corresponding experimental data. We take as the solution those values 
of the constants for which the norm of the deviation is smaller than some given value (as a 
rule, this value is the experimental error involved). For the most part, the problem has an 
ambiguous solution. If the set of solutions lies in some sufficiently small region (Ko • 
AK, Eo • AE, Qo • AQ, Bo • AB), the problem is considered solved. 

Success in solution of the converse problem depends most of all on correct choice of a 
mathematical model, and then on the character and quantity of experimental data available, 
i.e., on the informativeness of the data. 

Thus in solving a concrete converse problem it is necessary to distinguish these two fac- 
tors and to study the question of the information content of the available experimental data 
either qualitatively or by numerical experiment on the mathematical model. 

For such a numerical experiment one can consider the set of functions T(t, 0) and T(t, 
ro) found from Eqs. (1), (2) at certain fixed values of the constants K, E, Q, B for various 
To as experimental data for the converse problem. The solution is then sought as a minimiza- 
tion of the function @. 

In such an experiment errors of the model are eliminated and there remains the pure prob- 
lem of finding the constants in the given model. Since the solution is known, the result of 
the numerical experiment should give an answer to the question of the accuracy of determining 
the constants (AK, AE, AQ, AB) as a function of the value of the norm @. These estimates 
should serve as a criterion of the accuracy of the solution of the converse problem for a 
real experiment with the mathematical model considered, and also serve as a basis for relat- 
ing the uncertainty in the solution, which exceeds the estimate thus made, to inaccuracy in de- 
scription of the real experiment by the model considered. 

Generally speaking, the norm of the deviation may be chosen in various manners. We 
chose the following norm: 
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Fig. 2. Comparison of experimental (i)and cal- 
culated (2) data on temperature change of reac- 
tion mass in center and at wall of reaction vol- 
ume upon polymerization of dodecalactam under 
conditions of heat exchange with constant tempera- 
ture sink. Experimental conditions: A = 0.5 mol. 
%; Tr, 180~ (a) a~ 190~ (b); i) experimental; 
2) calculated curve. 

' ; [ (  ) .... m t , r ~ '  ( t )  2 

n ~=1 = 4 ( t ~ - - t k )  *h 

(1 T~(t) (1 T~(t) )21+ (I T~(t) T~(t) )2+ T"~ (t) T"~ (t) f ] dt. 

The functions T~(t) and T~(t) are solutions of Eqs. (i), 
ro obtained by numerical methods. 

(3) 

(2) T(t, r) for r = 0 and r = 

Numerical integration of Eqs. (i), (2~ was performed by an implicit difference scheme 
with linearization of the nonlinearity e -E/RT (i -- n) in each layer and solution of the cor- 
responding linear system by the drive method. 

Preliminary analysis revealed that for a successful determination of the constants con- 
sidered it was necessary to have the curves T(t, 0) and T(t, ro) for two To values differing 
as much as possible, since data for close-lying values of To determine basically the complex 
Koexp(--E/RTo), as will be demonstrated below with the example of two numerical experiments. 

For the initial "experimental" data we chose T(t, 0) and T(t, ro) calculated for B = 
0.9 from Eqs. (i), (2) using values of the constants K, Q, E obtained in an adiabatic experi- 
ment. Their dimensionless values were: K = 0.15; E = 0.032. In the first numerical experi- 
ment temperatures To = 160 and 190 ~ were considered; the second experiment considered two 
close-lying temperatures: To = 180 and 190 ~ For the initial point in the calculations 
values quite far removed from the true ones were chosen: K = 0.01; E = 0.i; B = 0.04; Q = 2 
J/cm s, which corresponds to r = 73.5. 

B~ solving the converse problem in the first numerical experiment we obtained: K = 
0.15; E = 0.0331; Q = 42.7 J/cma; B = 0.878, and r = 0.01. A comparison of theoretical and 
original "experimental" data obtained for this case is shown in Fig. i. 

The following data characterize the accuracy of constant determination as a function of 
the value of the deviation norm ~, obtained in the minimization process at K = 0.15: 

= 0,04 B = 0,575 Q = 35,7 q5 = 0,11 
0,0385 0,5775 39,27 0,06 
0,0339 0,706 41, I7 0,02 
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Fig. 3. Calculation of required pro- 
cess d u r a t i o n  f o r  v a r i o u s  i n i t i a l  
temperatures, ~ heat transfer con- 
ditions; a n d  s p h e r i c a l  p a r t  s i z e s :  1)  
B = 0; 2) 0.5; 3) i-3. 

From this it follows that if the original experimental data are obtained with an error 
greater than 6% the error in calculation of, for example, E will then be as follows: E = 
14.2 kcal/mol (calculation), E = 12 kcal/mol (true value). 

As for the parameter B, it may be said that for its determination a very accurate experi- 
ment is required (error up to ~1%). The combination of the parameters Ko and E (i.e., K) at 

= 0.06 is defined quite well (original value 0.15, value obtained 0.15), while Q is deter- 
mined to 10%. The error in E determination produces an error in Ko, which is calculated as 
AKo/K ~ AK/K + A~T,. The basic contribution to error in Ko calculation is produced by the 
term AET,. In our case 0.006-433 ~ 2.6, and, consequently, only the order of magnitude of 
the constant Ko may be determined. 

However, in the theoretical model the constants K and ~ appear (and not Ko and E), which 
are found with a much higher relative accuracy and determine certain important characteris- 
tics, for example, the duration of the process. 

The solution of the converse problem in the second numerical experiment produced the 
values ~ = 0.09645; E = 0.05145; Q = 40.2; B = 0.76 at # = 0.06. Due to the closeness of 
the temperatures To (180 and 190~ as was expected the constants ~ and E were determined in= 
dividually with unsatisfactory accuracy, but the complex Koexp(--E/RTo) at To = 190 ~ was equal 
to 0.411, which is close to the value of 0.405 found from the constants K and E of the first 
numerical experiment. 

We will now process the experimental data obtained in a real experiment. For solution 
of the converse problem with f(~) = i -- q and E = const two experiments performed at To = 
180 ~ and 190 ~ were taken (A = 0.5 mol. %)~ Constants were determined by minimization of ~(K~ 
E, Q, B) beginning with two different initial points. In the one case at # = 0.06, K = 0.13; 
E = 0.029; B = 0.568; Q = 44.98. In the other case at ~ = 0.08, ~ = 0.169; E = 0.021; B = 
0.92; Q = 45.7. 

Curves of T(t) calculated from both sets of parameters agreed satisfactorily with the 
experimental data (Fig. 2). The complex Koexp(--E/RTo) for To = 190 ~ for these parameter 
values was equal to 0.301 and 0.304, respectively. 

The method used here makes it possible to use the constants found for the model of Eqs. 
(I), (2) to calculate the temperature changes, the degree of completion of the process of 
producing spherical parts by pol~erization of the monomer "en masse," and the duration of 
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the process t for various To and various conditions of heat transfer to the surrounding me- 
dium. 

For example, let t be defined as the time at which ~ = 0.95 is attained under worst case 
conditions r = ro. The results of the calculations are shown in the form of the dependence 
of t* = at/r~ on To for various B in Fig. 3. The calculations were performed with the model 
of Eqs. (i), (2) for the constant values presented above, found from "adiabatic" experiment. 
The calculations were also repeated for constant values obtained from nonisothermal experi- 
mentwith themethod described above.i, Divergence between the results does not exceed l0%. 

Thus the study performed shows thatsolution of the converse problem of constant deter- 
mination from the thermokinetic model givensufficient information in the form of experimen- 
tal data with sufficient accuracy (including the accuracy of the model) makes it possible to 
determine these constants with a satisfactory degree of accuracy, which in turn makes pos- 
sible solution of various engineering physics problems connected with nonisothermal poly- 
merization of various monomers "en masse." 

NOTATION 

T, temperature; t, time, min; To, temperature in reactor center; T,, temperature on re- 
actor surface; TR, temperature of surrounding medium; r, current radius, cm; ro, reactor ra- 
dius, cm; ~, thermal diffusivity coefficient, cm2/sec; c, specific heat, J/cmS.deg; Q, ther- 
mal effect of reaction, S/cmS; E, activation energy, kcal/mol; ~, degree of transformation; 
R, unlversal^gas constant, kcal/mol.deg; B, Blot criterion; K, kinetic constant, min-*; K = 

-E/RT,. - T 2 . ^ - KoAe , E - E/R ,, t - at/r~; T, = 160~ f(~), kinetic function; m, number of segments 
into which integration interval is divided; n, number of series of measurements from which 
parameters are determined; tk, segment ends; lk, weight of each segment; tmax, integration 
limit; A, concentration of catalytic system, mol. %; superscript m indicates theoretically 
calculated, superscript e, experimentally determined function T(t); t*, critical value of ^ 

t. 

I. 

2. 
3. 
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